952

Computer Program Descriptions

Scalar Finite-Element Program Package for
Two-Dimensional Field Problems

PURPOSE: This program produces assembled finite-element
matrices for solving scalar two-dimensional Laplace’s, Poisson's, or
Helmbholtz's equations.

LANGUAGE: Fortran 1V, G level. Source deck length, includ-
ing comments and documentation, approximately 4750 cards.

AUTHORS: A. Konrad and P. Silvester, Department of
Electrical Engineering, McGili University, Montreal 110, P. Q.,
Canada.

AVAILABILITY: ASIS-NAPS Document No. NAPS-01604. Copies
‘of the source decks may be obtained from the second author, on
9-track IBM magnetic tape or in card form, within two years of
publication, Prepayment of U. S. $60 for tape or U. S. $100 for cards
is requested.

Manuscript received October 14, 1970, revised July 21, 1971.

For program listing, order document NAPS-01604 from ASIS National Auxiliary
Publications Service, c/o CCM Information Corporation, 909 Third Avenue, New
York, N. Y. 10022; remitiing $4.00 per microfiche or $12.70 per photocopy.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, DECEMBER 1971

DESCRIPTION: The entire program package contains two basic
subroutines, READIN and ASSEMB, which generate finite-element
matrices; plus a host of matrix manipulation and data handling sub-
routines, all called by a common main program. The two central
subroutines are furnished in two versions: one providing elements
up to fourth order, the other up to sixth order. The fourth-order
element program is, in principle, similar to an earlier waveguide
program [1], [2] and uses the same elements [3], but differs in the
flexibility allowed in input and output arrangement. The enlarged
version uses new element matrices generated by means of a Formac
program similar in principle to that described in [3].

The listing is quite extensively commented so that users can
readily adapt the package to special needs if so desired. Indeed,
some users may prefer to employ locally available routines for all
functions except those performed by READIN and ASSEMB; others
may wish to stay with the security of an already debugged package.
The latter has been written to accommodate a very large variety
of problems, and will probably satisly many users without any
alteration.

READIN, the first subroutine called by the main program, serves
two functions: 1) it reads data cards, prints out all input data, ex-
tends the input data set, and generates logical codes for guiding the

Fig. 1.

Map of approximate point disposition in the elements specified by the input data. The heavily circled points are those appearing in the input point list (see Fig. 2),

but renumbered; the remainder have been supplied by subroutine READIN, The light lines denote element boundaries. Note that various element orders have been used.

COMPUTER PROGRAM DESCRIPTIONS

953

wXRF ___ SAMPLE PROBLEM.__. .___.__ e
SCALE = 1.00 HORIZONTAL
SCALE = 1.00 VERTICAL
286 INPUT POINT LIST #uk
POINT HOR1ZONTAL VERTICAL
NO. CODRDINATE COORDINATE
1. ~16,00000 0.0
2. -16.00000 16300000
3. 3.20000 6440000
4. ~3.20000 6126666
5. ~1.60000 -2,13333
6. 0.0 0,0
7. 16.00000 0.0
8. 16.00000 ~16,00000
9. 1.60000 -3,20000
%% INPUT ELEMENT LIST *%%
TRIANGLE ORDER VERTICES: CONSTRAINTS MATERTAL
PROPERTY
ND. N A B € ALB B¢ A_C (PERMITTIVITY)
1, 1 3 4 5 o 0 o 1,00000
2, 1 3 5 9 o 0 0 1,00000
3. 1 5 6 9 0 o o0 1.00000
4. 2 3 6 7 0o 0 o 1.00000
5. 2 1 6 4 1 0 o 1,00000
6, 3 1 2 3 1 0 o 1.00000
7. 5 2 8 7 11 o 1,00000
#k¢ ASSEMBLED POINT LIST ###
POINT HOR T ZONTAL VERTICAL POINT HORTZONTAL VERTICAL POINT HORTZ
i ONTAL VERTICA
NO. COURDINATE COORDINATE NQO, CODRDINATE COORPINATE NGO, COORDINATE CUQROXNA#E
1. 3,20000 ~6,40000 12. 3.20000 ~12,80000 23 ~16,00000 -5,33333
2. ~3,20000 ~4.26666 13, 3,20000 9160000 24, ~16100000 ~10.66667
2 -1,60000 -2,13333 14, 9,60000 +12,80000 25, -9,60000 ~16,00000
. 1,60000 ~3,20000 15, 9460000 ~9160000 26, ~3.20000 ~16,00000
3 9160000 ~3,20000 16, 960000 6440000 27, 3.20000 -16.00000
. 8100000 0.0 17, ~16,00000 0.0 28, 9.60000 -16,00000
g 9460000 -2.13333 18+ ~16,00000 ~16,00000 29, 16.00000 ~12,80000
. ~9160000 7146666 19. 0.0 0.0 30, 16400000 ~5.60000
. ~9,60000 -12,80000 20, 16.00000 0.0 31, 16.00000 ~6,40000
10+ . =3,20000 ~9,60000 21, 16.00000 -16,00000 az, 16,00000 ~3,20000
11. -3,20000 -12.80000 22. 8400000 040
wenk o SAMPLE PROBUEMo oo oo HHkE
ok
* ®
* EIGENVALUE = 0,1BT075E 00 *
£ 3 *
x MEEFEREEREX
*x% LIST OF PQINTS WITH FREE POTENTIALS i+
POINT FREE POINT FREE POINT FREE
ND, POTENTIAL N, PATENTIAL NO, POTENTIAL
1, 0.347866E 0O 7. 0,339793€~01 13 0.280359E 00
2. 0.165919€ 00 8. 0.891267€-01 14, 0.120003¢ 00
3. 0.110519E 00 3. 04466054E-01 15, 0,221251F 00
4, 0.240717€ 00 10, 04+180403€ 00 16, 0.290905E 00
5, 0.324126€ 00 11, 0,109832F 00
6. 0.365176E 00 12. 0,157206E 00

Fig. 2.

Partial printout for the sample problem. From top to bottom: input point list, specifying the vertices; input element list, specifying the seven elements in Fig. 1 1n

terms of their vertices; full list of renumbered points appearing in Fig. 1; output giving the lowest TM mode of the guide shown. Other sections of the printout give
problem statistics, full point lists for all elements, solution values for the constrained boundary nodes, etc.

finite-element assembly; and 2) it checks for data errors. The input
data formats are arranged so as to reduce keypunching to an abso-
lute minimum, thus simplifying program use as well as reducing
likelihood of blunders; data not explicitly supplied are generated by
READIN. For example, a sixth-order element involves 28 nodal points.
Only the three triangle vertex locations, however, are supplied by
the input, while the remaining twenty-five are generated by the
program, and added to the input point list. Similarly, data which

may repeat from element to elemnent (e.g., material properties or
order of element) may be omitted from punching, and will be in-
serted by READIN.

If a data error is found, READIN instructs the main program to
call READIN again. In this way, long runs of data sets may be pro-
cessed without undue concern about punching errors; identifiably
mistaken data sets are simply read, but not processed. If no error
exists, subroutine AssEMB is called. Here matrices S and 7" are con-

954

structed from the element describing matrices (stored as block data)
for each triangle and are assembled into one large S and T matrix,
respectively.

Once the element matrices have been assembled, the problem is
ready for solution, either using a Gaussian elimination routine, or
else by means of an eigenvalue problem package, depending on the
problem. Appropriate routines are included in the program. With
the exception of READIN and MAP, all subroutines are input—output
free, the final processing of results and their printing being handled
by the main program. Subroutine MAP sketches on the line printer
the approximate locations of the generated nodal points, so as to
permit rapid freehand sketching and checking of output.

EXAMPLE

A brief illustration of program use is provided by solving for the
TM modes in a vaned (thin-ridged) waveguide similar to that in
[2]. Fig. 1 shows half the cross section of such a guide, as drawn by
the subroutine MAP from the input data. The input data proper
for this problem consist of nine cards giving the coordinates of the
nine triangle vertices (the points doubly circled in Fig. 1) and seven
cards each of which defines one triangular finite element by stating
its three vertex numbers, the degree of polynomial approximation to
be used in that triangle, and boundary constraints (if any). A few
other cards, which perform housekeeping functions (e.g., furnishing
the title SAMPLE PROBLEM), are also included with the input. These
cards are processed by subroutine READIN, For illustrative purposes,
the present problem includes a variety of elements (one fifth-, one
third-, two second-, and three first-order); for all elements except
first order, additional points are generated (the singly circled points
in Fig. 1), and all points are renumbered for processing convenience.
All input data and all data generated are printed out, as is a set of
problem statistics (array sizes actually used, error codes, etc.). The
latter are invaluable, should a set of data be abandoned because of
an error condition.

In the authors’ opinion, the average user cannot be expected to
have any acquaintance with the internal operation of the individual
subprograms. Every effort has been made, therefore, to identify, and
to communicate to the user, any reason for malfunctioning—whether
arising from hardware considerations (such as excess matrix size) or
blunders (e.g., specifying a triangle with two identical vertices).

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, DECEMBER 1971

Part of the input data, as reproduced by READIN, appear in
Fig. 2, followed by the listing of all points (including both original
input and the newly generated ones) as renumbered. In the input
element list, it may be noted that boundary conditions are given for
each triangle edge; the character 0 is interpreted as a continuity
requirement between elements or as a homogeneous Neumann
boundary condition at edges; the character 1 is interpreted as a
homogeneous Dirichlet condition. (Other options are also provided.)

The matrix assembly and equation solution follow; these gener-
ate no output. Once solutions have been obtained, they are printed
out as listings of eigenvalues and point values of the corresponding
eigenfunctions. Part of the output, illustrative of the arrangement,
appears in Fig. 2. It will be noted that values are listed only for
unconstrained points, Where Dirichlet constraints are imposed, the
values are the same for all modes, and are therefore only printed
out once at the beginning of the output listing.

TIMINGS

The assembly of element matrices is executed rapidly, so that the
major portion of computing time (about 70-95 percent, depending
on the problem) is expended on the matrix algebra of actual equation
solving. Timing estimates, therefore, may be made by prospective
users by adding a small overhead cost to the known timings for
solving matrix equations. The matrix algebra routines included in
this package use Gaussian elimination for simultaneous equation
solving, and the Householder transformation method for the eigen-
value problem; however, other subprograms may be substituted
without difficulty. The storage requirements are roughly 100 kbytes
for the smaller (fourth-order) program, and nearly 200 kbytes for
the larger one. These figures are of course dependent on the maxi-
mum matrix orders contemplated, and may be modified by the user.

The sample problem above required solving an eigenvalue prob-
lem of order 16; the execution phase (excluding compilation and
input—output operations) cost 76¢ in central processing unit charges.

REFERENCES

[1] P. Silvester, “A general high-order finite-element waveguide analysis program,”
IEEE Trans. Microwave Theory Tech., vol. MTT-17, Apr. 1969, pp. 204-210.

(21 , “High-order finite element waveguide analysis,” IEEE Trans. Microwave
Theory Tech. (Comp. Prog. Desc.), vol. MTT-17, Aug. 1969, p. 651.

3 , “High-order polynomial triangular finite elements for potential problems,”
Int. J. Eng. Sci., vol. 7, 1969, pp. 849-861.

