
952 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, DECEMBER 1971

Computer Program Descriptions

Scalar Finite-Element Program Package for

Two-Dimensional Field Problems

PURPOSE : This program produces assembled finite-element

matrices for solving scalar two-dimensional Laplace’s, Poisson’s, or
Helmholtz’s equations.

LANGUAGE : Fortran IV, G level. Source deck length, includ-
ing comments and documentation, approximately 4750 cards.

AUTHORS : A. Konrad and P. Silvester, Department of
Electrical Engineering, McGill University, Montreal 110, P. Q.,
Canada.

AVAILABILITY: ASIS-NAPS Document No. NAPS-01604. Copies
‘of the source decks may be obtained from the second author, on

9-track IBM magnetic tape or in card form, within two years of

publication, Prepayment of U. S. $60 for tape or U. S. $100 for cards
is requested.

Manuscript rcc&ed october 11, 1970, revised July 21, 1971.
For program listing, order document NAPS-01604 from ASIS National Auxiliary

Publications Service, c/o CCM Information Corporation, 909 Third Avenue, New
York, iY. Y. 10022; remit~ing $4.oo per microfiche or $12.70 per photocopy.

DESCRIPTION: The entire program package contains two basic

subroutines, READ IN and ASSEMB, which generate finite-element

matrices; PI LIS a host of matrix manipulation and data handling sub-

routines, all called by a common main program. The two central

subroutines are fur nished in two versions: one providing elements

up to fourth order, the other up to sixth order. The fourth-order

element program is, in principle, similar to an earlier waveguide

program [1], [2] and uses the same elements [3], but differs in the

flexibility allowed in input and output arrangement. The enlarged

version uses new element matrices generated by means of a Format

program similar in principle to that described in [3].

The listing is quite extensively commented so that users can

readily adapt the package to special needs if so desired. Indeed,

some users may prefer to employ locally available routines for all

functions except those performed by READIN and ASSEMB; others

may wish to stay with the security of an already debugged package.

The latter has been written to accommodate a very large variety

of problems, and will probably satisfy many users without any

alteration.

READIN, the first subroutine called by the main program, serves

two functions: 1) it reads data cards, prints out all input data, ex-

tends the input data set, and generates logical codes for guiding the

(

(

(

e..

08

—

o11 012

016

015

014

Fig. 1. Map of approximate point dislmsition in t!le elements sD~ciSed by the input da:a. The heavik circled points, are those aupearipg in the inLmt cmint list (see Fig. 2),
but renumbered; the remainder have been supphed by wibrOu@e REA?QY, The kht hnes denote element boundaries. ~lOte that ~arlous element orders ha>-e been used.



COMPUTER PROORAM DZ?SCRIPTIONS 953

**** .-. -.--------SAMPLE PROBLEM ----- -------- ****

P(3AN1
NLI.

1.
2.
3.
4.
a.
b.
7.
8.
v,

10.
11.

HORIZONTAL
C13UROINATF

3,20000
-3,20000
-l, bOOOO

1,60000
9,60000
8,00000

-9,60000
-9.60000
-9;60000

.-3,20000
-3,20000

SCALE = 1.00 HORIZONTAL

SCALE = 1,00 VERTICAL

PuINT NORIZONTAL VERTICAL
No. COORDINATE COUROINATE

1. -16.00000
2,

0,0
-16,00000

3.
-16,00000

3.20000
4.

-6,40000
-3,20000

5,
-4.26666

-1.60000
6.

‘2,13333
0.0 O*O

7. 16.00000
8.

0.0
16.00000

9.
-16,00000

1.60000 -3,20000

*** ]NPUT ELEMENT LIST ***

TKIANGLE t3RoER VERTICES; CONSTRAINTS MATERIAL
PRoPERTY

ND, N A B c A-B 8-C A-C (P ERMITT IV ITY)

1, 1 3 4 5 000 1,00000
2, 1 3 5 9
3,

000
1 5 b

1,00000
9 00 1,00000

4, 2 3 6 7 00 ;
5, ?. 1 b 6

1,00000

6, 3
100

2 3
1,00000

100
7. 5 : 8

1.00000
7 110 1,00000

**?I AS SEMEI. EO POINT LIST ***

VERTICAL
COORDINATE

-6.40000
-4.26666
-2,13333
-3,20000
-3,20000

0,0
-2,13333
-7,46666

-12,80000
-9,60000

-12,80000

POINT HORIZONTAL VERTICAL
NO. COUROINATE CCiOR131NATE

12.
13.
14.
15.
16,
17.
18.
19.
20,
21,
22,

3,20000
3,20000
9,60000
9,60000
9,60000

-14,00000
-16,00000

0,0
16.00000
16,00000
-8,00000

-12,80000
-9,60000

-12,80000
-9,60000
-6,40000

0,0
-16,00000

O*O
0,0

-16,00000
0,0

PCIIN1
NO.

23,
24.
25,
26,
2T.
26,
29,
30,
31,
32,

HORIZONTAL
COOROXF+ATE

-16,00000
-16.00000

-9,60000
-3.20000

3,20000
9.60000

16,00000
16,00000
16,00000
16,00000

VERTICAL
COCIRO!NATE

-5s33333
-10,66667
-16,00000
-16,00000
-16,00000
-16,00000
-12,80000

-9.60000
-6,110000
-3,20000

**** -.---------.-SAMPLE PROBLEt9-_____.q ***;

***** *************************
* *
* EIGENVALUE = 0,187075E 00 *
* *
***** *************************

*** LIST OF PoINTS WITH FREE PoTENTIALS ***

POINT FREE
NO, POTENTIAL

POINT FREE
NO. POTENTIAL

POINT FREE
NO, POTENTIAL

1. 0.347866E 00 7, 0,339793E-01
2, 0.1659196 00

13. 0,280359E 00
8. 0. E91267E-01

3. o.11o519E 00
14, 0.120003E 00

9, 0,466054E-01
4, 0.240717E 00

15. 0,2212.51E 00
10, 0*180403E 00

5. 0,3241266 00
16. 0,290905E 00

11, 0, 109832E 00
6, 0.365176E 00 120 0,157206E 00

Fig. 2. Partial printout for the sample proble~.. From top to bottom: iuput point list, specifying the wrticea; input element list, ispecifying the seveu elmnents in Fig. 1 In
terms of their yertlces; fu}l h+ of remmbered points appearing in Fig. 1; output giving the lowest TM mode of the guide shown. Other sections of the printout gwe
problem statistics, full point hsLs for all elements, solution values for the constrained boundary nodes, etc.

finite-element assembly; and 2) it checks for data errors. The input

data formats are arranged so as to reduce keypunching to an abso-

lute minimum, thus simplifying program use as well as reducing

likelihood of blunders; data not explicitly supplied are generated by

READTN. For example, a sixth-order element involves 28 nodal points.

Only the three triangle vertex locations, however, are supplied by

the input, while the remaining twenty-five are generated by the

program, and added to the input point list. Similarly, data which

may repeat from

order of element)

serted bv READIN.

element to elemeut (e. g., material properties or

may be omitted from punching, and will be in-

If a data error is found, READIN instructs the main program to

call READIN again. I n this way, long runs of data sets may be pro-

cessed without undue concern about punching errors; identifiable y

mistaken data sets are simply read, but not processed. If no error

exists, subroutine ASSEMB is called. Here matrices S and T are con-



954 LEEE TRANSACTIONS ON MLCROWAVE THEORY AND TECHNIQUES, DECEMBER 1971

strutted from the element describing matrices (stored as block data)

for each triangle and are assembled into one large .S and T matrix,

respectively.

Once the element matrices have been assembled, the problem is

ready for solution, either using a Gaussian elimination routine, or

else by means of an eigenvalue problem package, depending on the

problem. Appropriate routines are included in the program. With

the exception of READEN and MAP, all subroutines are input–output

free, the final processing of results and their printing being handled

by the main program. Subroutine MAP sketches on the line printer

the approximate locations of the generated nodal points, so as to

permit rapid freehand sketching and checking of output.

EXAMPLE

A brief illustration of program use is provided by solving for the

TM modes in a vaned (thin-ridged) waveguide similar to that in

[2]. Fig. 1 shows half the cross section of such a guide, as drawn by

the subroutine MAP from the input data. The input data proper

for this problem consist of nine cards giving the coordinates of the

nine triangle vertices (the points doubly circled in Fig. 1) and seven

cards each of which defines one triangular finite element by stating

its three vertex numbers, the degree of polynomial approximation to

be used in that triangle, and boundary constraints (if any). A few

other cards, which perform housekeeping functions (e.g., furnishing

the tide SAMPLE PROBLEM), are also included with the input. These

cards are processed by subroutine READIN. For illustrative purposes,

the present problem includes a variety of elements (one fifth-, one

third-, two second-, and three first-order); for all elements except

first order, additional points are generated (the singly circled points

in Fig, 1), and all points are renumbered for processing convenience.

All input data and all data generated are printed out, as is a set of

problem statistics (array sizes actually used, error codes, etc.). The

latter are invaluable, should a set of data be abandoned because of

an error condition.

In the authors’ opinion, the average user cannot be expected to

have any acquaintance with the internal operation of the individual

subprograms. Every effort has been made, therefore, to identify, and

to communicate to the user, any reason for malfunctioning—whether

arising from hardware considerations (such as excess matrix size) or

blunders (e.g., specifying a triangle with two identical vertices).

Part of the input data, as reproduced by READIN, appear in

Fig. 2, followed by the listing of all points (including both original

input and the newly generated ones) as renumbered. In the input

element list, it may be noted that boundary conditions are given for

each triangle edge; the character O is interpreted as a continuity

requirement between elements or as a homogeneous Neumann

boundary condition at edges; the character 1 is interpreted as a

homogeneous Dirichlet condition. (Other options are also provided.)

The matrix assembly and equation solution follow; these gener-

ate no output. Once solutions have been obtained, they are printed

out as listings of eigenvalues and point values of the corresponding

eigenfunctions. Part of the output, illustrative of the arrangement,

appears in Fig. 2. It will be noted that values are listed only for

unconstrained points. Where Dirichlet constraints are imposed, the

values are the same for all modes, and are therefore only printed

out once at the beginning of the output listing.

TIMINGS

The assembly of element matrices is executed rapidly, so that the

major portion of computing time (about 70-95 percent, depending

on the problem) is expended on the matrix algebra of actual equation

solving. Timing estimates, therefore, may be made by prospective

users by adding a small overhead cost to the known timings for

solving matrix equations. The matrix algebra routines included in

this package use Gaussian elimination for simultaneous equation

solving, and the Householder transformation method for the eigen-

value problem; however, other subprograms may be substituted

without difficulty. The storage requirements are roughly 100 kbytes

for the smaller (fourth-order) program, and nearly 200 kbytes for

the larger one. These figures are of course dependent on the maxi-

mum matrix orders contemplated, and may be modified by the user.

The sample problem above required solving an eigenvalue prob-

lem of order 16; the execution phase (excluding compilation and

input–output operations) cost 764 in central processing unit charges.

REFERENCES

[1] P. Silvester, ‘A general high-order finite-element waveguide analysis program, ”
IEEE Trans. Mia’owaw. Theory Tech., vol. MTT-17, Apr. 1969, PP. 204-210.

[2] —, “High-order finite element waveguide analysis, ” IEEE Tfaws. Micr’owaw
Theovy Tech. (Comp. Prog. Desc.), vol. MTT-17, Aug. 1969, P. 651.

[3] —, “High-order polynomial triangular finite elements for potential problems, ”
Int.J.Eng. .Sci., vol. 7, 1969, pp. 849-861.


